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This paper describes the main development steps of KE projectiles from the
basic full calibre antitank steol round to today’s heavy metal sub-calibre pene-
trators having an aspect ratio of 30, along with the corresponding penetration
performance increase. A plausible development trend will be jacketed heavy
metal rods having aspect ratios of 40 plus. Penetration results of big calibrefiring
tests with monoblock and jacketed penetrators are presented. The conclusionis
that both projectile typesyield the same penetration for the samerod length and
the same vel ocity.

INTRODUCTION

At present the penetration performance of big calibre heavy metal KE projectiles ex-
ceeds 600 mmin RHA by far, asillustrated in Fig. 1.

Figure 1. Tungsten rod penetration in 2400 mm thick RHA plate of 260 HB hardness, ob-
liquity 53° NATO (1994 test in Thun).
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Astonishingly a very similar result had been
achieved 50 yearsago inthe US (Fig. 2)

Shortly after WWII in the Naval Proving
Ground at Dahlgren, Virginia, asteel projectile of
406 mm calibre neatly penetrated a 26" thick ar-
mour plate“without deformation”.

Figure 2. Penetration of a 26" thick armour plate
by asteel projectile of 406 mm calibre

(Photo by Dr. C. Lanz).

1950 1994 ratios
1994/1950

penetration P (mm RHA) 660 660 1:1
bore diameter (mm RHA) ~ 400 ~ 44 1:9.41
bore volume (cm® in RHA) ~ 83000 ~ 1000 ~1:83
projectile mass (kg) 1000 4.7 1:213
projectile velocity (m/s) ~ 800 ~ 1600 2:1
projectile energy (MJ) 320 6 1:53
propellant energy (MJ) 1000 40 1:25
bore volume per unit
projectile energy (cm® RHA/MJ) 260 167 1:1.56
specific penetration (P/Calibre) 1.63 5.5 3.37:1

The ballistic data comparison of these two tests show the development progress of
antitank KE projectileswithin the past 50 years:

Thelast two reference values are of special interest:

— On one hand the specific penetration of KE projectiles shows a massive increase from
around 1.6 to at least 5.5 calibres. This value approaches the specific penetrations
heretofore reachod by shaped charges only.

— Ontheother hand the specific bore volumeisabout 1.5 times|lessthan 50 years ago.

The following section describes the main development steps between the two mile-
stones mentioned above. There will be no presentation of exact historical data, but ageneral
compilation of the principal technological advances and their theoretical basis leading to
today’s state of the art. For more details see[1].

DEVELOPMENT HISTORY
In the 1917 edition of the well known textbook “Lehrbuch der Ballistik” by Carl

Cranz terminal ballistics are not treated extensively. Thereisthe calculation of the projec-
tile energy needed to put aman or ahorse out of action, however the purpose of the cap on
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an armour piercing round is mentioned as well. Such full calibre steel projectiles very of-
ten featured a cap and a ballistic ogive as state of the art, astonishingly up to the fifties
(Fig. 3A + 3B). During WW I terminal ballistics (projectile / target interaction) research
wasintensified to allow the devel opment of KE roundswith increased penetration.

An obvious approach may have been the idea to focus the projectile energy onto a
small diameter in order to reach a high penetration, taking the proportionality of energy
and perforation volumeinto account.

This idea was realised by designing the so-called APHC, armour piercing hard core
round (in German “ Panzerkerngeschoss”). In essence, APHC projectiles consist of ahard,
sub-calibre core within alight alloy body. In consequence, most of the kinetic energy im-
parted to an APHC projectile is concentrated in the sub-calibre core and hence on a smal-
ler area of the target. This, together with the high hardness of the core, leadsto greater ar-
mour penetration than that achieved with full calibre AP projectiles fired from the same
gun. At the beginning sub-calibre cores or penetrators have been made of steel, surroun-
ded by aluminium (Fig. 3C). Later tungsten carbide metal cores were used which have a
considerably higher density and hardness than steel (Fig. 3D). Compared to the full cali-
bre round the APHC core energy is considerably lower, but this drawback is more than
compensated by the significantly higher velocity due to the reduced mass. Moreover the
time of flight to target is shorter and the sighting range greater. These facts are very help-
ful when engaging moving targets.

The next development step, avery demanding one, wasto design aradially sectioned
lightweight sabot. At the muzzle the sabot is separated from the core (Fig. 3E).The dras-
tically reduced cross section resultsin amuch better exterior ballistics behaviour.

Projectile energy was increased further by replacing carbide metal (ca. 15 g/cm3 den-
sity) by tungsten or depleted uranium (ca. 18 g/cm3 density).

Of coursewith an APDS (armour piercing discarding sabot) round awide areain front
of the muzzle is endangered by the relatively heavy sabot segments, yet most armies take
this risk. However, the spin stabilised APDS is an expensive affair with a mediocre per-
formance, piercing only 2.5 to 3 calibres of armour steel. All the more so when comparing
this to shaped charges which penetrated 4 calibres as early as 1950. In fact France hasre-
frained from fielding APDS ammunition for the 105 mm AMX 30 tank and ordered
shaped charge rounds exclusively. This“obus G” had alow spin rate shaped charge since
it contained ball bearingsin the spin stabilised round. In other countries aswell the shaped
charge, hardened for the acceleration in high pressure tank guns, competes with APDS.
As opposed to the complicated “obus G” the far simpler “sliding” driving band was used
to keep the shaped charge from turning, stabilisation being provided by fins.

In the end this stabilisation method isthe key to a decisive devel opment breakthrough
in KE technology, since spin stabilisation limits the penetrator aspect ratio to a maximum
of 5. The Russians were the first to realise this elegant solution in mass production. The
115 mm calibre was new as well, the steel core was more than 400 mm long with approx.
40 mm diameter (Fig. 3F). Guidance in the smoothbore barrel was provided by a short
three-piece steel sabot and by the edges of the fins. Thiswasthe forerunner of the modern
KE projectile.

Thusthe T 62 tank’s main armament was a technology milestone. Yet it was far from
being perfect. Later, terminal ballistics research progress proved the great penetration in-
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crease using heavy metalsinstead of steel, especially for velocities above 1200 m/s[2, 3].
Comparing the fin stabilised steel rod with the spin stabilised heavy metal APHC the for-
mer penetrates only a 3 calibre length despiteits elegant outline. In the West further deve-
lopment was therefore clearly vectored towards long tungsten heavy metal rods. At the
beginning the strength of sintered tungsten was low, the slender rod had to be supported
by a high strength steel jacket (Fig. 3G). But soon the needed strength was found, sinter-
ing tungsten together with nickel, iron and cobalt or alloying uranium with titanium. Then
jacketing was no more necessary, the first monobl ock projectile emergedin 1976.

Their aspect ratios were between 10 and 15 (Fig. 3H). Astonishingly the Russians ad-
hered to the cheap steel rod for along time, even though using a 125 mm calibre and the
considerable rod length of some 550 mm.

On the other hand the use of heavy metalsis compulsory, as shown before. Theoretical
considerations requirethat the projectile hasto be
— aslongaspossibleinthefirst place
— asfastaspossiblein the second place.

These developments are in full swing. Taking the 105 mm calibre the core dimensions
of previously 30 diax 300 shifted to 25 diax 500 and to 20 diax 600 in the latest designs,
having an aspect ration of 30. The latter dimensions attain around 5 calibres penetration
length, about double the original APDS performance, with hardly altered internal ballis-

tics.
Improved internal ballisticswould alow 6 calibres penetrations heretofore reached by
shaped changes only.
Thekey to this progressis materialstechnology, see Table 1.
Tablel
Development generation 1 2 3 4
Year 1970 1978 1985 1995
Tensile strength Ry, (N/mm?) 800 1200 1450 1700
Yield strength Rpo 2 (N/mm?) = 650 1000 1400 1650
Elongation at break As (%) 1-4 =6 = =8

The table shows the progress in materials technology by optimising additive contents
of nickel, iron, cobalt, copper and manganese, as well as by optimising the production
process. Within 25 yearsthe yield strength was more than doubl ed.

Similar steps can be observed in depleted uranium technology (which is banned in
some countries, e.g. Germany and Switzerland):

Approximately the same tensile strength is achieved by aloying 0.75% Titanium, but
typicaly the elastic limit is less marked and the Young's modulus is by far lower for DU.
(120 GPa versus 360 GPa for Tungsten). DU-penetrators therefore need stiffer and hea-
vier sabots than tungsten rods, which compensates the slightly better impact behavior of
DUInRHA.
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STATE OF THE ART, TRENDS

Asmentioned before at the present time KE projectileswith rods of tungsten or deple-
ted uranium (DU) are in the inventories throughout the world or are being fielded. These
rods have an aspect ratio of around 30.

A rodfor the 120 mm calibreisaround 700 mm long with a corresponding diameter of
some 23 mm (root diameter of the load transfer thread). Compared to the intricate design
of 21960 APDS projectile today’s KE penetrators have simple layouts. It is essentialy a
cylindrical heavy metal rod with atapered front end (ca. 15° taper angle) with a steel tip
and athread at the rear end for attaching thefin.

The acceleration loads are transferred by the sabot (usually 3 petals) viaalong thread.
The drawback of this simple design is the very high sabot massto rod mass ratio. On big
calibre rounds the sabot mass amountsto at least 60% of the flying mass even for aclever
layout. Thisfact impliesapoor propellant energy utilisation.

Moreover the discarding sabot sections endanger awide area both in front of the tank
and laterally. Thereforeit is clear how to increase KE projectile performance:

— reduce sabot mass significantly
— maximise penetrator length within the system boundary with no projectile muzzle ve-
locity loss.

Sabot technology has practically been stagnant for the past 30 years. Sabots still con-
sist of the same high-strength aluminum. In the USA testswith big calibre fibre composite
sabots seem to have been successful. The aim of reducing sabot mass was missed how-
ever, the proportion still being 60%, possibly because of the DU-penetrator. Practicable
waysto increase penetration performance have been demonstratedin [4].

Heavy metal rods having aspect ratios in excess of 30 tend to bending deformations
after sabot separation and to breaking up in spaced armour. The careisto step “ back to the
future” to the begin of KE projectile development and use a stiffening jacket again: Both
launch ballistics (bending vibrations) and terminal ballistics (break-up in spaced targets)
call for an appropriate cross-section (moment of inertia) asafunction of rod length.

Jacketing the rods allow aspect ratios of 40 and higher (“inner” aspect ratio). The
jacket material should have alow density and a high modulus of elasticity (Young's mo-
dulus). For optimum design the bending stiffness (modulus x moment of inertia) of the
jacket should equal core bending stiffness, see[4]. For steel jackets and tungsten coresthe
ratio of outer to core diameter turns out to be 1.28.

Jacketed penetrators are being investigated in several places, using various jacket ma-
terials[4, 5, 6]. Results of steel jackets arereadily available, partly of fibre composite and
titanium jacketsaswell [7].

A jacketed penetrator becomes considerably lighter for a given outer diameter and
therefore faster (but with dlightly higher drag). It is now possible to extend penetrator
length to the system boundaries. However the blemish is now the sabot dead weight rela-
tion increase to more than 70% of the flying mass. The application of more advanced sa-
bot technology istherefore prerequisite. According to the boffins a30% mass reduction at
reasonable cost should well be feasible. At the same time the muzzle velocity would in-
crease again.
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A typical future penetrator would compare to the state of the art tungsten rod of 30
aspect ratio asfollows:

around 15% longer

nearly 8% faster

yielding ca. 22% higher penetration
i.e. apenetration increase of about 150 mm (Fig. 4), upto 825 mm RHA,, i.e. nearly 7 cali-
bers (refered to 120 mm).

The main feature of such ajacketed penetrator isits very low break-up probability in
complex targets. Moreover the steel jacketsinduce favourable flow dynamicsin the target
material resulting in impact craters of lower cross-sections, similar to DU penetrators.
Thus the lower mean density of the jacketed penetrator will at least be compensated, as
shown in Fig. 5. The numerous results prove the fact that both monoblock and jacketed
projectilesreach the same penetration for the same rod length and the same vel ocity.

Remark: We have committed ourselves to one specific trend. Different ideas can cer-
tainly be found in the proceedings of this symposium. Critical comparisons are | eft to the

readers.
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Figure 3. KE-projectiles: Development and penetration milestonesin RHA (BHN 260/ 0°
NATO-obliquity).
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