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MECHANICAL / STRUCTURAL DESIGN

Drive Plug

The drive plug blocks off the rear end of an otherwise hollow projectile and in the in-
itial layout, it also carries the driving band and therefore has to transfer spin-up torque to
the rest of the projectile.

A contrasting and challenging requirement of the drive plug is that it initially has to be
fixed to the projectile, but also has to separate from it as soon as possible after muzzle
exit. Clean and reliable separation with minimum disturbing forces being transferred to
the projectile was achieved (Fig. 1). One way to help expel the drive plug is to employ co-
nical contact surfaces but with a large enough included angle (larger than the self-locking
angle or angle of friction).

The concept of using solid fuel ramjet (SFRJ) propulsion to increase the range
of artillery projectiles is being investigated at Somchem. Initial work was car-
ried out on a 76 mm smooth bore kinetic energy penetrator. The focus has shif-
ted to a l55 mm gyroscopically stabilized projectile. The initial objectives set to
the team were a) To comply with the NATO Joint Ballistic Memorandum of
Understanding, JBMoU, b) Range of at least 70 km, c) Payload of 5 kg HE or
40 dual-purpose submunitions and d) Market price of less than 5000 US$ ex-
cluding the course correction fuse.
The project was divided in three subsystems for the concept phase, namely a)
Structural Design, b) Propulsion and c) Aerodynamics. The experimental de-
sign, execution and results of the wind tunnel tests are discussod in a separate
paper by Stockenström and Dionizio [2].
Initial firings were carried out with special charges made up to obtain a muzzle
velocity of 900 m/s.
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Figure 1. Clean separation of drive plug just after muzzle exit.

The interface between the drive plug and the projectile has to be strong enough to re-
sist environmental testing, normal handling, as well as ramming forces. A typically higher
value of ram retardation was measured as 700 g’s.

Two different drive plug interfaces were evaluated through actual test firings of pro-
jectiles with a representative mass and roll inertia. Axial acceleration forces are used to
break initial binding/bridging geometry between the drive plug and the ring carrying the
nozzle. One concept tested, relied on friction at a short conical surface, as well as a nor-
mal contact surface, to transfer torque. The other type of interface relied on positive inter-
locking to transfer torque and fulfilled all requirements except that it is considered relati-
vely expensive to manufacture.

Driving Band

Locating the driving band on the projectile itself, and not on the drive plug, is another
option being evaluated. This largely eliminates torque transfer problems but increases
aerodynamic drag on the projectile. Another consequence of a forward driving band is the
requirement for some kind of sealing at the interface between the projectile and the drive
plug.

General Structural Design and Layout

Although the drive plug involves a domed shape, it is still one of the heavier compo-
nents. Finite element structural analysis was used to minimise the drive plug mass. Both
the drive plug and propellant casing are made of a high strength and toughness cold work
tool steel (offering low distortion during vacuum heat treatment). An alternative material
like maraging steel could also be considered but might only be economical at production
quantities. The casing is subjected to enormous axial acceleration forces (130 000 m/s2).
However, every effort has to be made to ensure that components to the rear of the projec-
tile are as light as possible to ensure a forward centre of gravity as required for stability. A
study was undertaken in parallel to investigate the viability of making the propellant cas-
ing from composite material.
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a) b)

Figure 2. Layout with a) central payload b) annular payload.

A concept still to be further investigated involves a projectile with no drive plug at the
rear, but rather a plug against chamber pressure located inside and at the front of the pro-
pellant casing. This allows one to design a lighter casing due to pressure equalisation to-
gether with a forward placed driving band. Disadvantages of this design, compared to the
concept described above, are increased drag due to the integral driving band, and difficul-
ties in ensuring clean expulsion of the inner plug through the nozzle.

Two general projectile layouts were considered: a central payload (Fig. 2) vs. an annu-
lar payload. A central payload requires one or two sets of radial webs to support it inside
the forward body. It offers the best shape and space to accommodate available sub-muni-
tions. Negative aspects include manufacturing cost and structural risks due to the webs
carrying a relatively large mass, and also the complexity of expelling the sub-munitions.
A benefit of the annular layout is that the major load paths are aligned through the outer
walls of the projectile structure offering a more effective and robust structure. No thin
walls would be in direct contact with the barrel because of the warhead inherent thick-
ness. Other advantages of the annular layout are perceived lower cost and a better stability
margin due to higher roll inertia.

The current demonstrator round also has a center body supported by webs, but it in-
volves the much smaller and lighter inlet cone and diffuser. Forces on the webs includes
axial acceleration, spin acceleration as well as lateral acceleration and vibration. The late-
ral forces considered include: a) centrifugal force due to barrel curvature (e.g. due to non-
uniform temperature distribution), b) centrifugal force due to a slight non-eccentrical
mass distribution in the spinning projectile, c) and lastly forces due to transverse recoil
motion. Lateral accelerations were previously measured and yielded substantial values –
typically in the order of 2000 g’s.

Threaded Interfaces

Threaded interfaces are being used between the nozzle ring and the propellant casing,
and between the propellant casing and the forward section. These interfaces required a
major design effort due to the large spin acceleration (230 000 rad/s2) plus accompanied
torque involved. Initial failure was caused by excessive radial deformation as the thread
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wedges itself open under torque loading. This was confirmed by non-linear finite element
analysis, but there were aggravating factors. The friction coefficient used to calculate the
axial force from the torque, proofed to be substantially lower in practice due to the dyna-
mic conditions involved. Secondly, there was the amplification of structural response due
to the dynamic loading conditions (“overshooting”). A further detrimental effect was the
returning tensile stress wave originating from the drive plug impacting against the rear of
the projectile, after fracture of the temporary interface that initially holds the drive plug
(Fig. 3).

Figure 3. Axial force at mid joint due to impact from dynamic FE analysis.

Several possible solutions were considered to solve the threaded interface problem.
First of all, sufficient joint length and a course thread pitch are required. Increasing the
thickness of the relevant components has to be done with due care, because it impacts ne-
gatively on the total mass as well as center of gravity. Butting up against a bevelled shoul-
der could also help to counter thread dilation. A Buttress thread form is ultimately a better
solution but more complicated (costly) to manufacture and inspect.

Propellant Grain

The structural integrity of the propellant grain was evaluated through test firings. The
HTPB based propellant formulation was fiber reinforced, but also contained metal parti-
cles. The grain successfully survived the severe launch accelerations.
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PROPULSION

Combustion tests were conducted at the Somchem Hot Air Blow-Down Test Facility
to determine the basic performance characteristics of a solid fuel ramjet (SFRJ) propul-
sion system representative of that to be used with a 155 mm artillery projectile configura-
tion [1]. The tests are discussed briefly in the following paragraphs. The test set-up is
shown in Fig. 4.

Figure 4. Test set-up.

The main objectives of the first phase exploratory tests were the following:
1) Demonstrate successful ignition.
2) Investigate the effect of operating conditions, mainly stagnation temperature (Tt0) and

mass flow rate (m· a) of incoming air, on combustor performance.
3) Acquire test data that could be used to improve the accuracy of propulsion system per-

formance predictions.
4) Investigate the effect of mixing chamber length on combustor performance.

Experimental set-up and test hardware

Transition valves were used to dump vitiated air during facility start-up until the re-
quired operating conditions were achieved. At this point, the grain is ignited and the tran-
sition valves switched to redirect all by-pass air through the SFRJ combustor.

The modular SFRJ test hardware allowed convenient changes to the basic combustor
configuration (i.e. port diameter, exit nozzle diameter and aft mixing chamber length).
Basic dimensions and other relevant information of the test hardware are listed below:
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Station 2 diameter (d2): 72 mm
Fuel port diameter (dp): 94.4 mm ≤ dp ≤ 138 mm
Mixing chamber length (l/d4): 2 for tests PR_1 to PR_5, 0 for test PR_6
Station 4 diameter (d4): 138 mm
Exit nozzle area ratio (A5/A4): 0.272
Total fuel mass (mf): ~2.25 kg

Test conditions and summary of results

Six tests were conducted and test conditions are summarised in Table 1. Also listed are
average values calculated for fuel mass flow rate (m· f), burn rate (rb) and air/fuel ratio
(o/f). The remaining sliver mass at the end of a test is also listed. As mentioned previously,
one of the main objectives of the test series was to determine mf or rb as a function of Tt0,
m· a and dp. Tests PR_1, PR_4 and PR_2 were therefore conducted at comparable Tt0
while m· a was reduced from 5.24 kg/s to 1.37 kg/s. It was evident that the burn time (and
therefore also rb and m· f ) is strongly influenced by changes in m· a.

Table 1. Test conditions with some measured/calculated parameters

During tests PR_1 PR_5 and PR_3 the m· a was kept constant while Tt0 was reduced
from 705 K to 528 K. Test results indicated that rb is less sensitive for variations in Tt0
over the mentioned range.

Tests PR_5 and PR_6 were conducted at similar operating conditions, the only diffe-
rence being the removal of the mixing chamber during test PR_6. This was done to evalu-
ate the effect of the mixing chamber on combustor performance.

Approximate values of m· f = f(t), and therefore also averaged values of rb = f(t), were
derived from the p2 = f(t) integral. Shown in Fig. 5 is the relationship between rb, Tt0 and
m· a for a specific dp.
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Figure 5. Fuel burn rate as a function of Tt0 and m· a for a specific dp.

Discussion

A brief summary of the test results is listed below:
1) Successful and reliable ignition was demonstrated.
2) Good and stable secondary combustion was demonstrated within the temperature

range of 675 K ≤ Tt0 ≤ 705 K and mass flow range of 1.37 kg/s ≤ m· a ≤ 5.24 kg/s.
3) m· f, and therefore also rb and burn time, is strongly dependant on m· a. The effect of Tt0

on m· f is less pronounced.
4) Removal of the mixing chamber had a smaller than expected effect on combustion

performance. Less stable combustion was noticed when the mixing chamber was re-
moved.

5) Residual mass of fuel after the test (sliver mass) as percentage of initial fuel mass va-
ried between 1.7 % and 6.5 %.
In general, the SFRJ combustor performed well with good combustion efficiency.

First indications of combustion stability and flameout limits seem to be acceptable.

INLET

Development and optimization of the axi-symmetrical inlet were conducted by way of
flow field analysis and wind tunnel testing. High pressure recovery throughout the Mach
envelope is desirable, because it allows higher propulsion performance and requires a
smaller flow duct through the payload section. Wind tunnel testing has taken place to cha-
racterize different inlet configurations (Fig. 6).
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Figure 6. Inlet test hardware.
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