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A number of studies aimed at increasing the range of a 155 mm artillery round
have led to aconcept ramjet projectile designated as PRORAM [1]. Defencetek
has been contracted by Somchem to design, manufacture and test such a confi-
gurationinitsHSWT (High Speed Wind-tunnel) blow-down facility.

WIND-TUNNEL START-UP LOAD PROBLEMS

Preliminary calculations of the wind-tunnel start-up loads resulting from the large mo-
del plan form at the proposed Mach range (M2.2 to M3.0), led to the implementation of
an unique model and balance (load measuring device) protection system. A solution had
to be found such that the model could be tested at high Mach numbers without incurring
any damage to the costly balance in use. Various supersonic blow-down facilities around
the world employ protective plates that retract into the tunnel walls [2] shortly after the
start of the blow in order to protect the model from the high start-loads (2100 N for the
case in study). Limited funding prompted a cheaper and more adaptable solution to be
found. The protective system, named the grounding mechanism (Fig. 1), comprises a
taper lock mechanism which is driven into a matching taper on the model centre-body
section by rods which are connected to amotor located in a protective housing (Fig. 2). At
the start of the blow, the mechanism islocked onto the model in order to transfer the high
loads directly into the sting. The taper lock is then retracted for the duration of the blow
and locked again for the stop shock at the end of thetest.
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Figure 1: Schematic view of grounding mechanism.
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Figure 2: Grounding mechanism in wind-tunnel.
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MODULAR WIND-TUNNEL MODEL

The 1/3 scale model with through flow was designed and manufactured (Fig. 3) toin-
corporate the grounding mechanism concept. With a diameter of 52 mm and a nominal
length of 344 mm, the model facilitates the use of different cowl and cone geometries for
theinvestigation of different inlet designs (Fig. 4). In addition, a number of outlet nozzles
were designed to simulate variousthroat exit sizes, Figure 5.

Figure 3: Program wind-tunnel model.

Figure 4: Cowl and cone sets.
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Figure5: Model rear end with nozzle removed.

LOAD AND PRESSURE MEASUREMENTS

Model load measurements were acquired using a six component 12 mm strain gauge
internal balance. A six port rake located at the rear end of the model (Fig. 2) was utilized
to characterize the flow performance of the variousinlet and nozzle configurations. Fig. 6
shows a Schlieren picture of the model during atest.

Figure6: Test Schlieren at Mach 3.0.
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DERIVATION OF THE AXIAL FORCE COEFFICIENT

The first part of the test was structured around verifying the soundness of the experi-
ment, specifically with regardsto Cpa, axia force coefficient. With axial force defined as
the sum of the external drag forces, it follows that the inlet and exit momentum stream
thrust components need to be determined and subtracted from the measured axial force.
These two quantities are both derived from measurements of the stagnation pressure up-
stream of the converging exit nozzle, Fig. 7. Assuming sonic conditions at the nozzle
throat (which is aso the exit plane), the mass flow rate, exit plane static pressure and exit
plane velocity are calculated [3]. This yields the exit stream thrust. With mass flow rate
known, theinlet stream thrust issimply derived from the free stream vel ocity.

The data presented refers to forebody drag (i.e. drag corrected for base pressure ef-
fects). The base of the model consists of two areas, inside and outside of the nozzle base
internal diameter. Base pressure measurements are acquired for both areas so that the base
drag contributions are accounted for separately. In order to extrapolate the wind-tunnel
datato areal life projectile, an estimate of the base pressure is required. The pressures
measured in the tunnel are not representative because the nozzle geometry differs from
the flight geometry and the exit gas stream is at adifferent Mach number.

Interchangeable nozzle

Nozzle base pressure

L — 1 Air flow total pressure

I 3 Sting base pressure

Figure 7: Schematic of pressurerake.
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Tests conducted with different nozzles yielded similar results, as expected and shown
inFig. 8. The axia force components are sensitive to changesin nozzle throat diameter. A
smaller throat, for instance, requires a higher stagnation pressure to yield the same mass
flow rate. Obtaining the same end result with different geometries and acquired data sets
confirms the inlet flow measurement and the derivation method for axial force coeffi-

cient.
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Figure 8: Confirmation of experimental method.

WIND-TUNNEL RESULTS

Different cowl and inlet configurations were tested. The practical consideration isthat
ablunter cow! alows space internally for better inlet geometries and more fuze and pay-
load volume. This needs to be traded off against the predicted increase in wave drag on
the cowl. The inlet design Mach number (M at which the shocks focus at the lip) deter-
mines the point below which the axia force increases sharply due to additive drag. The
effect of thisis simulated by employing a spacer ring to position the inlet cone slightly
forward.
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Fig. 9 showsthe considerable drag increase due to a blunter cowl shape. At Mach 2.65,
the increment amounts to 0.068. For the PRORAM concept, this huge drag increment
makes the sleek cowl the optimum configuration.

The effect of inlet design Mach number is relatively smaller, but significant for the
sleek cowl configuration. For the blunt cowl configuration, the small change due to lower
than design Mach number is believed to be aresult of the increased additive drag being
offset by alower static pressure on the cowl behind theinlet cone shock.
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Figure 9: Axial forcefor various configurations.
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The effect of the cowl configurations on stability is less pronounced. Fig. 10 shows
fairly similar curves for pitching moment derivative (Cy). These aerodynamic charac-
teristicsare similar to those for blunt nosed projectiles.
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Figure 10: Stability.

The results achieved confirm the experimental soundness of the tests. The sampled
data allows optimisation of the external shape and serve as a good aerodynamic database
for the PRORAM project.
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